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30+ languages / 80+ courses
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300M+ users worldwide
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First microservice on ECS
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Why move to microservices?

Scalability

@) Flexibility ﬁ Reliability
[ . ]
' Cost savings

Velocity
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How do you decide what to carve out of your monolith first?

» Start with a small, but impactful feature
* Move up in size, complexity, and risk

» Consider dependencies

[
Daily French Reminder

Hi Max! Keep Duo happy! Remember that learning a
language requires a little bit of practice every day.
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Monolith

System availability
0.99
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Chained microservices

0.99*0.99*0.99 =0.97
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Independent microservices

1-(1-0.99)3=0.9999995
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Why use Docker for microservices?

» Standardizes the build process and encapsulates dependencies
Local development environment similar to production
* Quick deployments and rollbacks

Flexible resource allocation
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Simplitying local development setup (old way)

. Clone this repository.

. Set up and activate a virtualenv and install requirements using pip install -r requirements.txt.
. Dbownload and install Postgres: brew install postgresql

Run Postgres locally: postgres -D /usr/local/var/postgres

. bownload pgAdmin3 (not totally necessary, but will make 1ife easier).

SO vl b~ W N

. Using pgAdmin3, create a new login role under your local server with name "admin" and password
"somepassword".

7. Create a DB called “db".

8. Run the migration script in the repo using python manage.py db upgrade.

9. Check that your DB 1is now populated with tables.

10. Set up and run memcached: brew install memcached

11. Set up and run redis: brew install redis-server

12. Set up and run elasticsearch: brew install elasticsearch

13. Finally, try to run the server using python application.py. You can test if it’s working by going here



Simplitying local development setup (new way)

$ docker-compose build

$ docker-compose up



Why use Docker with ECS?

D@ Task Auto Scaling ‘ CloudWatch metrics
\ 4 ~~

? Task-level IAM & Dynamic ALB targets

|| },‘ Manageability
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Microservice abstractions at Duolingo

Web service (internal or external)

—————————————————————— —

1+ @

*_Route53 ALB

\______________________/

Data stores

1F

KMS

RDS

DynamoDB

LE|

Redis/Memcached

Monitoring
CloudWatch Grafana

L

ELK stack PagerDuty
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Microservice definition in Terraform

module “duolingo-api" {

source = “repo/terraform//modules/ecs_web_service"
environment = “prod"

product = “duolingo” .

cervice _ “api" Billing tags
owner = “Max Blaze"

min_count = 2

max_count _ 4 Auto Scaling
Ccpu = 512

—— _ 256 Resources
ecs_cluster = "prod"

internal = "true"

container_port = 5000

version = "${var.version}"

duolingo



Aurora database cluster definition in Terraform

module “duolingo-api-db* {

source = “repo/terraform//modules/ecs_web_service"
product = “duolingo”

service = “api” .

subservice = “db" Billing tags

owner = “Max Blaze”

cluster_identifier = “duolingo-api-db-cluster”

identifier = “duolingo-api”

engine = "aurora-postgresql"” DB engine

name = "duolingo”

password = "${data.aws_kms_secret.duolingo_api_db.duolingo_api_db}"
instance_class = "db.r4.large" Instance type
num_cluster_instances = 2
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Continuous integration and deployment

|

|

Developer

GitHub

Jenkins

Dockerfile build

4 | Deployment

Docker image pull

Docker image push

Terraform state

W

S3 bucket

A

Plan/apply with
version string

Terraform

AWS ECS
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| oad balancing

* ALBs and CLBs operate at different network layers
* ALBs are more strict when handling malformed requests
« ALBs default to HTTP/2

Headers are always passed as lowercase

 There are differences in CloudWatch metrics

ALB # CLB
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Task-level IAM role permissions

* Apply permissions at the service level
Do not share permissions across microservices

Needs to be supported by the AWS client library
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Standardizing microservices

Develop a common naming scheme for repos and services
* Autogenerate as much of the initial service as possible

Move core functionality to shared base libraries

Provide standard alarms and dashboards

Periodically review microservices for consistency and quality
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Monitoring microservices

Web service dashboard

Local time and UTC

Healthy, unhealthy, and
running tasks

Latency average and
percentiles

Number of requests

CPU and memory utilization
(min/avg/max)

Service errors by AZ
ALB errors by AZ
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Monitoring microservices

Worker service dashboard

e Local time and UTC
« Running tasks

« CPU and memory
utilization (min/avg/max)

e Visible messages

e Deleted messages
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Monitoring microservices

PagerDuty integration

e Schedules and

rotations are defined
in Terraform

« Emergency alarms
page (high latency)

« Warning alarms go to
e-mail (low memory)

e Include links to
playbooks

o All pages are also
visible in Slack

Open Incidents

t from the
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Grading microservices

Architecture Documentation Processes Tests

- JGIEHC)
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Grading microservices

Documentation
Iltem Status
Is there a README file?
Does the README file specify an owner?
Is the documentation sufficient to install and run the microservice locally? v
Does the README state its dependencies on other microservices? v
Does the README state its clients? v
Is the APl documented? v
Is the architecture explained? (e.g. architecture diagram) v
Are operational processes explained? (e.g. deployment, DB schema changes, data loaders) v
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Cost reduction options

o Cluster
e Instance type
e Pricing options
« Auto Scale
« Add/remove AZs

e Task

e Resource allocation
o Auto Scale

Worker

’J
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Cluster starting point

c3.2xlarge
Reserved Instances

On-Demand
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High-CPU Instance Generations

c3.large 0.105

SSD

+20% of c3 0.100 None (EBS-only)
c5d.large +25% of c4 0.096 NVMe

c5is 50% faster than c3!
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Moving to a new EC2 generation

Latest instances are generally faster and cheaper but...
* ‘“cpu” units in ECS will not be equivalent

» Auto Scaling may not work properly between generations

c5.large c4d.large c3.large
cpu =1024 cpu =1024 cpu =1024

(1 vCPU core = 1024 units)
duolingo



Fixed number of instances

c5d.2xlarge
Reserved Instances

On-Demand

Auto Scaling

SN\

c5d.large...c5d.18xlarge
mb5d.large...m5d.24xlarge

Reserved Instances
On-Demand

Spot
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Fixed number of instances

c5d.2xlarge
Reserved Instances

On-Demand

'

cnotinct

SN\

c5d.large...c5d.18xlarge
mb5d.large...m5d.24xlarge

Reserved Instances
On-Demand

Spot
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Spotinst cluster features

us-east-1a us-east-1b  us-east-1c  us-east-1d us-east-1e
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* Mixes families + sizes

« Uses RIs before spot

* 15 minute spot notice

* AZ capacity heat map
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Spotinst cluster features

Drains ECS tasks

Cluster “headroom”
Spreads capacity across AZs
Bills on % of savings

Terraform support

DISTRIBUTION - US EAST (N. VIRGINIA)
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Auto Scaling with Spotinst

INSTANCE COUNT 6 hours 1day 7 days

60

Oct 18 Oct 19 Oct 20 Oct 21 Oct 22 Oct 23 Oct 24
M Reserved Running M On-Demand Running
~ Spot Running Spot Launching
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What about per-microservice costs?

* Audit CPU/memory allocations for each service

» Update Auto Scaling and/or CPU allocations as needed

Goals
60% CPU
60-80% Memory

CPU utilization

~ - \ / ~
Maximum: 58% N - T N

- Average: 48%
= Minimum: 38%

17:20 17:30 17:40 17:50 18:00

== Average Current: 38% Maximum Current: 44% == Minimum Curren t:31%
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Adjusting allocated CPU for scaling

allocatedCPU * currentUtilization = actualCPU
actualCPU / desiredUtilization = Units to set

Example:
Current utilization: 40%
Desired utilization: 60%

1024 * 40% = 409.6
409.6 / 60% = 682.67

Set ECS “cpu” allocation to 683

(1 vCPU core = 1024 units)
duolingo



Adjusting allocated memory

» Track memory usage between deployments

* Constantly increasing memory usage points to memory leaks

* Set containers to restart if memory exceeds 100%

Memory utilization

0%
17:20 17:30 17:40 17:50 18:00

== Average Current: 48% Maximum Current: 49% == Minimum Curren t: 44%
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P| Ccosts

May 2018 Jun 2018 Jul 2018 Aug 2018 Sep 2018 Oct 2018

B StandardStorage [ ListAllMyBuckets [ GetObject PutObject [l GlacierStorage [ Others

ListAlIMyBuckets + GetObject > 50% of S3 cost!
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LImIts

“Each Amazon EC2 instance limits the number of
packets that can be sent to the Amazon-provided DNS

server to a maximum of 1024 packets per second per
network interface. This limit cannot be increased.”

S_Mmaj
“Nitro based instance types are running fine nowadays. Just
be aware that they might be not available in all AZs within

region. And | think Nitro is not caching DNS requests where
xen based instance were doing that.”

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-limits
https://www.reddit.com/r/aws/comments/9bu4x4/how_are_nitro_instances_treating_everyone/
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https://www.reddit.com/user/s_maj

Cost savings

EC2 compute costs

> 60% reduction in compute

costs [

> 30% reduction in costs per -

monthly active user (MAU)

> 25% reduction total AWS bill I

July August September October

> 60% reduction from May to October
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Key results

Scalability

* Manage ~100 microservices

Velocity

- Teams deploy to their own services

Flexibility
« Officially support 3 different programming languages

Reliability

« 99.99% availability achieved after implementation

Cost

« 60% reduction in compute costs
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duolingo.com/careers
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http://duolingo.com/careers
http://duolingo.com/careers

Resources

* Books
« Building Microservices: Designing Fine-Grained Systems (Sam Newman)
« Microservices in Production (Susan J. Fowler)

* References
« ec2instances.info
« github.com/open-quides/og-aws

« Tools and services
« ansible.com
« docker.com
« elastic.io
« github.com

« grafana.com

* jenkins.io

« pagerduty.com
« runatlantis.io

* spotinst.com

« terraform.io
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