duolingo

Microservice Journey

Ohio LinuxFest 2019 Max Blaze

Free and accessible language education for all

duolingo

= 2 @200
5
Basics 1

: 2 a 1
Phrases Animals
93 @
Food Family

G
Which of these is “the
cheese"?
‘I
-
la fresa el queso

y |
D ‘ A
 J
el pescado la carne

Tap what you hear

© [

Los

mis gatos no

beben agua cerveza

Choose a course

L7\
9,

A _victnamese

Spanish

French

German

Chinese

Swedish

Korean

Polish

Irish

The most downloaded education app in the world

duolingo

I CLLA

30+ languages / 80+ courses

duolingo

54

1

Hours of Duolingo University Semester

duolingo

<

300M+ users worldwide

duolingo

180 employees

duolingo

Duolingo growth

. Users ® Employees
300M 160
225M 120
150M 80
/5M 40
oM - 0
2012 2013 2014 2015 2016 2017 2018

duolingo

First microservice on ECS
A brief history I

Infrastructure as code.H’
Centralized [Q
dashboards + logging 4

14

First microservice :

Auto Scaling »‘ﬁ

Config @
N management
Launch 4008
2012 2013 2014 2015 2016 2017 2018

duolingo

Why move to microservices?

Scalability

@) Flexibility ﬁ Reliability
[.]
' Cost savings

Velocity

duolingo

How do you decide what to carve out of your monolith first?

» Start with a small, but impactful feature
* Move up in size, complexity, and risk

» Consider dependencies

[
Daily French Reminder

Hi Max! Keep Duo happy! Remember that learning a
language requires a little bit of practice every day.

duolingo

Monolith

System availability
0.99

duolingo

Chained microservices

0.99*0.99*0.99 =0.97

duolingo

Independent microservices

1-(1-0.99)3=0.9999995

duolingo

Why use Docker for microservices?

» Standardizes the build process and encapsulates dependencies
Local development environment similar to production
* Quick deployments and rollbacks

Flexible resource allocation

duolingo

Simplitying local development setup (old way)

. Clone this repository.

. Set up and activate a virtualenv and install requirements using pip install -r requirements.txt.
. Dbownload and install Postgres: brew install postgresql

Run Postgres locally: postgres -D /usr/local/var/postgres

. bownload pgAdmin3 (not totally necessary, but will make 1ife easier).

SO vl b~ W N

. Using pgAdmin3, create a new login role under your local server with name "admin" and password
"somepassword".

7. Create a DB called “db".

8. Run the migration script in the repo using python manage.py db upgrade.

9. Check that your DB 1is now populated with tables.

10. Set up and run memcached: brew install memcached

11. Set up and run redis: brew install redis-server

12. Set up and run elasticsearch: brew install elasticsearch

13. Finally, try to run the server using python application.py. You can test if it’s working by going here

Simplitying local development setup (new way)

$ docker-compose build

$ docker-compose up

Why use Docker with ECS?

D@ Task Auto Scaling ‘ CloudWatch metrics
\ 4 ~~

? Task-level IAM & Dynamic ALB targets

|| },‘ Manageability

duolingo

Microservice abstractions at Duolingo

Web service (internal or external)

—————————————————————— —

1+ @

*_Route53 ALB

______________________/

Data stores

1F

KMS

RDS

DynamoDB

LE|

Redis/Memcached

Monitoring
CloudWatch Grafana

L

ELK stack PagerDuty

duolingo

Microservice definition in Terraform

module “duolingo-api" {

source = “repo/terraform//modules/ecs_web_service"
environment = “prod"

product = “duolingo” .

cervice _ “api" Billing tags
owner = “Max Blaze"

min_count = 2

max_count _ 4 Auto Scaling
Ccpu = 512

—— _ 256 Resources
ecs_cluster = "prod"

internal = "true"

container_port = 5000

version = "${var.version}"

duolingo

Aurora database cluster definition in Terraform

module “duolingo-api-db* {

source = “repo/terraform//modules/ecs_web_service"
product = “duolingo”

service = “api” .

subservice = “db" Billing tags

owner = “Max Blaze”

cluster_identifier = “duolingo-api-db-cluster”

identifier = “duolingo-api”

engine = "aurora-postgresql"” DB engine

name = "duolingo”

password = "${data.aws_kms_secret.duolingo_api_db.duolingo_api_db}"
instance_class = "db.r4.large" Instance type
num_cluster_instances = 2

duolingo

Continuous integration and deployment

|

|

Developer

GitHub

Jenkins

Dockerfile build

4 | Deployment

Docker image pull

Docker image push

Terraform state

W

S3 bucket

A

Plan/apply with
version string

Terraform

AWS ECS

duolingo

| oad balancing

* ALBs and CLBs operate at different network layers
* ALBs are more strict when handling malformed requests
« ALBs default to HTTP/2

Headers are always passed as lowercase

 There are differences in CloudWatch metrics

ALB # CLB

duolingo

Task-level IAM role permissions

* Apply permissions at the service level
Do not share permissions across microservices

Needs to be supported by the AWS client library

duolingo

Standardizing microservices

Develop a common naming scheme for repos and services
* Autogenerate as much of the initial service as possible

Move core functionality to shared base libraries

Provide standard alarms and dashboards

Periodically review microservices for consistency and quality

duolingo

Monitoring microservices

Web service dashboard

Local time and UTC

Healthy, unhealthy, and
running tasks

Latency average and
percentiles

Number of requests

CPU and memory utilization
(min/avg/max)

Service errors by AZ
ALB errors by AZ

Local time
2018-11-03

11:12PM
Healthy tasks

7

Latency

220 22 235 2240 225

— Response time Min: 104 ms Max: 126 ms AVg: 11.1 ms Current: 113 ms

ks

CPU utilization

2215 2220 225
— Average Current: 45% ~— Maximum Current: 52% = Minimum Current: 39%

Service 5xx errors by zone

°
220 2225 230 2235 240 2285

1a = useast1b —useastlc — useastld

ad balancer

Connections
K

0 U 4\ S G A G P
.

2215 2220 225 2230 2240

= Active connections = New connections = Refected connections = Target TLS negotiation errors

uTc
201811:04

03:12

Unhealthy tasks

Latency percentiles
100ms 40000

E

1ms

215 220 2225 2230 2235 2240 2245 2250 2255 2300 215 220 225 230

Running tasks

Requests

5 2240 2245 2250 2255 2300 2305

— Average Current: 11 ms = p99 Current:S0ms = p95 Current: 39 ms = pS0 Current: 6 ms Current: 4ms — Number of requests Min: 18586 Max: 36647 Avg: 31518 Current: 18586

Memory utilization

2 2230 2235
— Average Current: 47% — Maximum Current: 51% = Minimum Current: 42%

Service 4xx errors by zone

215 220 2225 230 4 2 . 215 220 225 230

Ser

235

—useastla — useastib — us-east —useastia —useastib — useastic = useas

Load balancer 5xx errors by zone

2220 2230 2240

2220

rvice 3xx errors by zone

No data points

2305

Load balancer 4xx errors by zone

2230 2240

—useastia —useastib — useastic — useastld —useastla = useastib — useastic —us

2310

2310

duolingo

Monitoring microservices

Worker service dashboard

e Local time and UTC
« Running tasks

« CPU and memory
utilization (min/avg/max)

e Visible messages

e Deleted messages

duolingo

Monitoring microservices

PagerDuty integration

e Schedules and

rotations are defined
in Terraform

« Emergency alarms
page (high latency)

« Warning alarms go to
e-mail (low memory)

e Include links to
playbooks

o All pages are also
visible in Slack

Open Incidents

t from the

Local time
2018-11-03

11:12PM

Healthy tasks
7

Latency

235 2240 2300 2305
Min: 104 ms Max: 126 ms Avg 11.1 ms Current: 113 ms

CPU utilization

2220 225 2230

Maximum Current: 52 = Miimum Current: 39%

Service 5xx errors by zone

°
230 2235
castib = useastlc = useastld

Connections

£ 30 2 2240
Active connections = New connections = Rejected connections = Target TLS negotiation errors

2310

Unhealthy tasks

Latency percentiles
100ms

1ms
215 220 5 230 235 2240 5 250 2
— Average Current: 11 ms = p99 Current: SOms == p95 Current: 39 ms = pS0 Current: 6 ms — p20 Current 4ms

— Minimum Current 42%

Service 4xx errors by zone

9,
eds

—useastla = useastib — useastic — useastld

Load balancer 5xx errors by zone

S

22:¢ 2230 2240
—useastia —useastib — useastic — useastld

utc
2018-11-04
03:12
Running tasks

7

Requests
40000

E

10000

215 2220 s 230

240 2245 250 255

2300 2305 2310
— Number of requests Min: 18586 Max: 36647 Avg: 31518 Current: 18586

Memory utilization

2235

Service 3xx errors by zone

No data points
20181103 23:12:55

215 2220 2225 230 235

2305 2310
—useastia = useastib — useastic — useastld

Load balancer 4xx errors by zone

2220 2230 2240 250
—useastla —useastib — useastic — useastld

duolingo

Grading microservices

Architecture Documentation Processes Tests

- JGIEHC)

duolingo

Grading microservices

Documentation
Iltem Status
Is there a README file?
Does the README file specify an owner?
Is the documentation sufficient to install and run the microservice locally? v
Does the README state its dependencies on other microservices? v
Does the README state its clients? v
Is the APl documented? v
Is the architecture explained? (e.g. architecture diagram) v
Are operational processes explained? (e.g. deployment, DB schema changes, data loaders) v

duolingo

Cost reduction options

o Cluster
e Instance type
e Pricing options
« Auto Scale
« Add/remove AZs

e Task

e Resource allocation
o Auto Scale

Worker

’J

duolingo

Cluster starting point

c3.2xlarge
Reserved Instances

On-Demand

duolingo

High-CPU Instance Generations

c3.large 0.105

SSD

+20% of c3 0.100 None (EBS-only)
c5d.large +25% of c4 0.096 NVMe

c5is 50% faster than c3!

duolingo

Moving to a new EC2 generation

Latest instances are generally faster and cheaper but...
* ‘“cpu” units in ECS will not be equivalent

» Auto Scaling may not work properly between generations

c5.large c4d.large c3.large
cpu =1024 cpu =1024 cpu =1024

(1 vCPU core = 1024 units)
duolingo

Fixed number of instances

c5d.2xlarge
Reserved Instances

On-Demand

Auto Scaling

SN\

c5d.large...c5d.18xlarge
mb5d.large...m5d.24xlarge

Reserved Instances
On-Demand

Spot

duolingo

Fixed number of instances

c5d.2xlarge
Reserved Instances

On-Demand

'

cnotinct

SN\

c5d.large...c5d.18xlarge
mb5d.large...m5d.24xlarge

Reserved Instances
On-Demand

Spot

duolingo

Spotinst cluster features

us-east-1a us-east-1b us-east-1c us-east-1d us-east-1e

(7))
V4
(V)
(g0
e
(Vp)
O
LL]
@
)
>
iyt
O
(0
Q.
O
O
(V)
oyt
Ll
[J

* Mixes families + sizes

« Uses RIs before spot

* 15 minute spot notice

* AZ capacity heat map

duolingo

Spotinst cluster features

Drains ECS tasks

Cluster “headroom”
Spreads capacity across AZs
Bills on % of savings

Terraform support

DISTRIBUTION - US EAST (N. VIRGINIA)

duolingo

Auto Scaling with Spotinst

INSTANCE COUNT 6 hours 1day 7 days

60

Oct 18 Oct 19 Oct 20 Oct 21 Oct 22 Oct 23 Oct 24
M Reserved Running M On-Demand Running
~ Spot Running Spot Launching

duolingo

What about per-microservice costs?

* Audit CPU/memory allocations for each service

» Update Auto Scaling and/or CPU allocations as needed

Goals
60% CPU
60-80% Memory

CPU utilization

~ - \ / ~
Maximum: 58% N - T N

- Average: 48%
= Minimum: 38%

17:20 17:30 17:40 17:50 18:00

== Average Current: 38% Maximum Current: 44% == Minimum Curren t:31%

duolingo

Adjusting allocated CPU for scaling

allocatedCPU * currentUtilization = actualCPU
actualCPU / desiredUtilization = Units to set

Example:
Current utilization: 40%
Desired utilization: 60%

1024 * 40% = 409.6
409.6 / 60% = 682.67

Set ECS “cpu” allocation to 683

(1 vCPU core = 1024 units)
duolingo

Adjusting allocated memory

» Track memory usage between deployments

* Constantly increasing memory usage points to memory leaks

* Set containers to restart if memory exceeds 100%

Memory utilization

0%
17:20 17:30 17:40 17:50 18:00

== Average Current: 48% Maximum Current: 49% == Minimum Curren t: 44%

duolingo

P| Ccosts

May 2018 Jun 2018 Jul 2018 Aug 2018 Sep 2018 Oct 2018

B StandardStorage [ListAllMyBuckets [GetObject PutObject [l GlacierStorage [Others

ListAlIMyBuckets + GetObject > 50% of S3 cost!

duolingo

LImIts

“Each Amazon EC2 instance limits the number of
packets that can be sent to the Amazon-provided DNS

server to a maximum of 1024 packets per second per
network interface. This limit cannot be increased.”

S_Mmaj
“Nitro based instance types are running fine nowadays. Just
be aware that they might be not available in all AZs within

region. And | think Nitro is not caching DNS requests where
xen based instance were doing that.”

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-limits
https://www.reddit.com/r/aws/comments/9bu4x4/how_are_nitro_instances_treating_everyone/

duolingo

https://www.reddit.com/user/s_maj

Cost savings

EC2 compute costs

> 60% reduction in compute

costs [

> 30% reduction in costs per -

monthly active user (MAU)

> 25% reduction total AWS bill I

July August September October

> 60% reduction from May to October

duolingo

Key results

Scalability

* Manage ~100 microservices

Velocity

- Teams deploy to their own services

Flexibility
« Officially support 3 different programming languages

Reliability

« 99.99% availability achieved after implementation

Cost

« 60% reduction in compute costs

duolingo

duolingo.com/careers

duolingo

http://duolingo.com/careers
http://duolingo.com/careers

Resources

* Books
« Building Microservices: Designing Fine-Grained Systems (Sam Newman)
« Microservices in Production (Susan J. Fowler)

* References
« ec2instances.info
« github.com/open-quides/og-aws

« Tools and services
« ansible.com
« docker.com
« elastic.io
« github.com

« grafana.com

* jenkins.io

« pagerduty.com
« runatlantis.io

* spotinst.com

« terraform.io

duolingo

http://ec2instances.info
http://github.com/open-guides/og-aws
http://ansible.com
http://docker.com
http://elastic.io
http://github.com
http://grafana.com
http://jenkins.io
http://pagerduty.com
http://runatlantis.io
http://spotinst.com
http://terraform.io

