
They Don’t Make ‘em Like They
Used To

Integrating Junior Developers into Your Team

April 26, 2019

We don’t want Redshirts

C

C

Who Am I?

▪ Robin Clower

▪ Career Path

▪ Workstate Consulting

▪ Drupal, Liferay, DevOps

High
School
Math

Teacher

Junior
Developer

Productive
Team

Member

Outline

A B

C

▪ All Aboard the USS Enterprise – Onboarding Best Practices

▪ Set Phasers to Stun – Replicable Technology Set-Up

▪ I’m a Doctor, not a Teacher! – Effective Technical Teaching Methods

▪ Live Long and Prosper – Integration and Development Opportunities

All Aboard the USS Enterprise
Onboarding Best Practices

Make Day 1 Count

A B

C

▪ Have a computer available

▪ Allows time to customize computer preferences and learn company-specific tools

▪ Plan a Team Meeting / Lunch

▪ Ask remote members to come in when possible

▪ Assign a buddy team member

▪ Ideally with a similar experience level and skillset – for the little questions

▪ Keep it low stakes

Weeks 1 - X

Junior Developer Responsibility

▪ Technology set-up

▪ Document pitfalls for future onboarding

▪ Prepare Mini Projects / Presentations

▪ Rely on the buddy when embarrassing issues

come up

▪ Reach out to a variety of sources on the team

for help when questions come up

▪ Meet deadlines or communicate in advance if

a delay comes up

Your Responsibility

▪ Maintain documentation on tools and

installation

▪ Develop confidence-building mini-deliverables

▪ Check in on the buddy system

▪ Provide contacts – they’re just as important as

answers

▪ Communicate a flexible (but defined) timeline

Structure is key

A B

C

▪ Maintain a technical onboarding document

▪ Help your junior developer help themselves

▪ Communicate expectations clearly

▪ Set goals - short and long

Self Reflection

A B

C

ACTIVITY (get out some paper or a phone):

▪ 4 minutes

▪ One positive, one negative onboarding experience you’ve had

▪ One positive, one negative about your team’s most recent onboarding

▪ Talk to the person next to you

Set Phasers to Stun
Replicable Technology Set-Up

What tech does your Junior Dev need?

A B

C

ACTIVITY:

▪ 2 minutes

▪ Write all tech (hardware, software, languages) you use

▪ Think through entire day

▪ Include version number if important

Me:

A B

C

▪ Linux (Ubuntu)

▪ Bash

▪ Vi/Vim/Nano

▪ Yarn

▪ Gulp

▪ Composer

▪ Drush

▪ Slack

▪ PHP 7.0

▪ PHPStorm

▪ Xdebug

▪ Codesniffer

▪ Apache2

▪ MySQL

▪ MySQL

Workbench

▪ Synaptic

Package

Manager

▪ Chrome

▪ Page Ruler

▪ OpenVPN

▪ AMP Validator

▪ Siteimprove

▪ Drupal 8

▪ SCSS

▪ Javascript

▪ Jquery

▪ Zoom

▪ HTML

▪ Twig

Assess what technology you use

A B

C

▪ Categorize your list

▪ NI - Not Important

▪ I - Installed / Intuitive

▪ Shouldn’t need to teach

▪ Examples: Slack / Atom / Chrome

▪ U - Understand

▪ Will need to teach

▪ Examples: Bash / npm / Node.js

Me:

A B

C

▪ Codesniffer - NI

▪ Page Ruler - NI

▪ Synaptic Package

Manager - NI

▪ AMP Validator - NI

▪ Siteimprove - NI

▪ Xdebug - NI

▪ Apache2 - I

▪ MySQL - I

▪ MySQL

Workbench - I

▪ PHPStorm - I

▪ PHP 7.0 - I

▪ Linux (Ubuntu) - I

▪ Slack - I

▪ Chrome - I

▪ Zoom - I

▪ Composer - U

▪ Vi/Vim/Nano - U

▪ Drush - U

▪ Bash - U

▪ OpenVPN - U

▪ Yarn - U

▪ Twig - U

▪ SCSS - U

▪ Javascript - U

▪ Jquery - U

▪ HTML - U

▪ Drupal 8 - U

▪ Gulp - U

Homework

A B

C

▪ Make your list a living document

▪ Share with team members (team drive) and ask for their additions

▪ Organize based on logical steps / importance

▪ Add time estimates

▪ Find resources

▪ List pitfalls

▪ Share with your new Junior Developers!

A B

C

Source: ohsh*tgit.com

Homework

A B

C

▪ Make your list a living document

▪ Share with team members (team drive) and ask for their additions

▪ Organize based on importance / logical steps

▪ Add time estimates

▪ Find resources

▪ List pitfalls

▪ Share with your new Junior Developers!

I’m a Doctor, not a Teacher!
Effective Technical Teaching Methods

Effective Teaching Methods

▪ Backwards design in the forefront

▪ Differentiation for each developer

▪ Scaffolding to help build developers’ confidence

▪ Keep Gardner’s Theory of Multiple Intelligences in mind

Just Kidding

A B

C

▪ Especially in coding, vocab & jargon matter

▪ Coding is like a foreign language

▪ Meet your Junior Developer where they are

The Tree Model of Learning

A B

C

▪ Roots - things junior dev should know

▪ How to read, etc.

▪ Trunk - solid base of knowledge

▪ HTML, CSS, PHP

▪ Branches - more specific knowledge

▪ SCSS, Drupal

▪ Twigs - real nitty gritty

▪ Syntax, jargon

▪ Leaves - visual demonstration of skill

▪ Useable end product

▪ Can’t have leaves without a solid trunk

A B

C

Assessing your Junior Developer’s Baseline

A B

C

▪ 90% of teaching is asking

questions

▪ Broad > Narrow questions

▪ Open ended but leading

questions

Answering Junior Developer Questions

A B

C

▪ Prepare for common questions

▪ Avoid tangents

▪ Don’t talk down

▪ Ask questions back

▪ Check in often

▪ No stupid questions

A B

C

Live Long and Prosper
Integration and Development Opportunities

Becoming a better team member

A B

C

▪ Lose the ‘Two Miles to School Uphill Both Ways’ Mentality

▪ Help prepare resources

▪ Find somewhere online that explains git well

▪ Be patient

▪ Stand up for your people

Help Avoid Junior Developer Pitfalls

A B

C

▪ Ask about real weaknesses

▪ Procrastination

▪ Discomfort asking questions

▪ Can’t handle pressure

▪ Overcome overreliance on internet (stack overflow, copy/paste)

▪ Provide specific expectations/assignments

Code Review: the most effective teacher

A B

C

▪ Goal isn’t to merge code, it’s merge good code

▪ Overall review should follow the tree model

▪ Start with big picture code problems

▪ After those are fixed, smaller improvements

▪ Lastly, refactoring, syntax, spacing

▪ Avoid personal attacks

▪ Comments should be constructive, ask open ended questions

▪ Be empathetic

Summary

A B

C

▪ Prepare in advance

▪ Hardware

▪ Onboarding Materials

▪ Assignments

▪ Think of a skill tree

▪ Ask questions

▪ Be patient

Questions?

