Kubeflow:Bring your ML project into Production

Liang Yan
Sr. Software Engineer, DigitalOcean

Software Engineer OpenSUSE Member Open-Source Advocator(KYOSS)

Louisville, KY

Interests:

- Virtualization
- SysML/Distributed ML
- Infrastructure build and optimization
- ARM64 board Enthusiast
- DevOps

https://xryan.net

Outline

- Prologue
- Kubeflow
- Kubeflow Components
- Demo
- Beyond
- Q&A

Flight Delay Predictor:

https://github.com/xrlyan/Flight-Delay-Prediction-Based-on-Neural-Networks

Input:

- Flight no
- Flight date

Output:

Delay possibility

Features:

- Depart/Arrive airport
- Depart/Arrive time
- Depart/Arrive city weather
- Flight model
- Flight History delay rate

As a Software Engineer:

As a Data Scientist/Engineer:

Prologue

Eventually, it becomes:

Kubeflow-Central-dashboard

Kubeflow

Kubeflow is:

K8S + TensorFlow

Application Toolkit

Orchestration

Cloud Native

DevOps/MLOps

Kubeflow is not:

K8S + TensorFlow

Application

Scheduler

Machine Learning Algorithm

Machine Learning Framework

Machine Learning Orchestration Platform:

- 1. Orchestrate pipeline
- 2. Orchestrate ML task

Great mind think alike!

Kubeflow components

Jupyter-notebook

Architecture

			Tra	in and Predic	t				
Preprocessor				Builder		Deployer			
Notebook	Function	Python	Append	Docker	Cluster	Job	TfJob	Serving	

An implementation for AutoML: tune hyperparameter automatically

Three CRDs:

experiment suggestion trial

The experiment creates multiple trials based on different suggestion algorithms.

Training Operator

Operator = Controller + CRD + Webhook Tool: kubebuilder

TF-Operator

Chief coordinate training job

PS server, parameter

Worker

Evaluator

The last mile!

KFP DAG

KFP Architecture

Kubeflow

Experiment Platform:

DO-DOKS: kubernetes v1.24

Kubeflow: v1.6.1

Linux Distro: Debian 10

Demo:

while! kustomize build example | kubectl apply -f -; do echo "Retrying to apply resources"; sleep 10; done kubectl --kubeconfig=/Users/lyan/kubeflow-kubeconfig.yaml port-forward svc/istio-ingressgateway -n istio-system 8080:80

Local Setup:

Juju + microk8s: kubernetes v1.22

Kubeflow: v1.6.0

Linux Distro: Ubuntu Jammy

https://charmed-kubeflow.io/docs/quickstart

Distributed Machine Learning(*)

Why?

Scalability, we really do not need it if it is a small dataset or model or customer base.

What?

Training Operator Scheduling Inference Model Optimization

How?

Simulate/predict for scheduler Model compiler

Beyond

Embedded Model

Lesson learned

1. Deployment

- 1. Kubevirt 1.22 + kustomerize
- 2. Disable TLS
- 3. Setup/Enable StorageClass

2. Running

- 1. docker runtime re-size
- 2. docker repository setup

3. Training model

- 1. ML training requests a lot resources
- 2. Need to do a lot of experiments
- 3. Setup environment is time consuming
- 4. Needs automation/pipeline

4. System Failure / Efficiency

Monitor large scale machine clusters are difficult Resource Competition

Q&A

Thanks!

Claim:

All the information is based on personal using experience, no preference or commercial advertising. If there are any conflicts, please refer to the statement from providers.

AI Cloud Providers

Support Matrix

	M60	P4	P40	P100	T4	RTX 6000	V100	A10	A40	A100	Notes
Aliyun		✓		✓	✓		✓			✓	
AWS	/		/		/		/	✓		✓	
Baidu		✓			/		✓			✓	
Google		/		✓	/		✓			✓	TPU
IBM	✓			/			✓				
Microsoft	✓		✓	/	✓		/	/		/	FPGA/AMD
Oracle				/			/			/	
Tencent		/	✓		✓		✓			✓	
Linode						/					
Paperspace							✓				
Lambda						✓	✓				
Vultr										/	vGPU/MIG

https://developer.nvidia.com/cuda-gpus

https://www.nvidia.com/en-us/data-center/gpu-cloud-computing/

NVIDIA Data Center Products

GPU	Compute Capability
NVIDIA A100	8.0
NVIDIA A40	8.6
NVIDIA A30	8.0
NVIDIA A10	8.6
NVIDIA A16	8.6
NVIDIA A2	8.6
NVIDIA T4	7.5
NVIDIA V100	7.0
Tesla P100	6.0
Tesla P40	6.1
Tesla P4	6.1
Tesla M60	5.2
Tesla M40	5.2
Tesla K80	3.7
Tesla K40	3.5
Tesla K20	3.5
Tesla K10	3.0

Al Cloud Service

•IAAS

- ML VM Image
- Container:
 - Docker
 - NGC
- Conda/pip3

PaaS

Help manage data and model (paperspace, Colaboratory)

•SaaS

Help consume AI solution (IBM Watson, Google voice)